Operating Instructions

Reverse-Osmosis-System Budget RO 80, 130

CE

Translation of the original instructions

381900_901_BA_GB_0518

Overview of contents

General Information	А
Transport and Storage	В
Technical data/ Product description	С
Set-up and Assembly	D
Placing the system in service / Taking it out of service	E
Operation / Monitoring	F
Malfunctions	G
Maintenance	Н

Appendix

PID with components list	Ι
Circuit diagram	II
Control system manual RO	III

Imprint

All Rights Reserved.

The edition date on the cover sheet is definitive. Subject to technical changes

These Operating Instructions may not be translated into foreign languages, reprinted, saved on data media or otherwise duplicated except with the express written approval of the manufacturer.

Contents of Chapter A

1	Not	es on using the Operating Instructions2	
2	Ger	neral safety information3	;
	2.1	Explanation of symbols and references	;
	2.2	Additional safety requirements	;
	2.3	Usage in accordance with intended purpose	;
	2.4	Operating staff	;
	2.5	Residual dangers4	ŀ
	2.6	Bringing the system to a stop in the event of an emergency4	ŀ
	2.7	Safety information for maintenance task5	,
	2.8	Disposing of system parts and operating materials5	,
	2.9	Unauthorized conversion and manufacturing replacement parts5	,
	2.10	Warrantee claims and liability5	,
3	Bas	ic principles of reverse osmosis systems6	
	3.1	The principle of reverse osmosis6)
	3.2	Calculation equations6)
	3.3	Dependencies of permeate output7	,
	3.4	Conductivity of first permeate7	,

1 Notes on using the Operating Instructions

Purpose:

The Operating Instructions are intended for users of the system and contain information on how to operate and maintain the system safely and reliably.

Availability:

The Operating Instructions must always be available at the place where the system is in use.

Subdivision:

The Operating Instructions consist of a number of chapters named by letters of the alphabet. An outline of all the chapters appears on Page 1.

The header and page numbering, along with the letter identifying each chapter, make it easier for you to orient yourself.

For information on the content of a specific chapter, please refer to the contents on the first page of that chapter.

Conventions/abbreviations:

OI	Operating Instructions
TD	Technical Documentation
RO	Reverse Osmosis
Permeate	Product water resulting from RO
Product	Product water from the UP system
CY	Conductivity
-	Enumerated items
Ē	Steps to be performed

2 General safety information

2.1 Explanation of symbols and references

This symbol refers to an immediate danger that threatens the safety and life of persons. Failure to observe these notices will have severe consequences on health and safety, including life-threatening injuries.

This symbol refers to a possible danger that threatens the safety and life of persons. Failure to observe these notices may have severe consequences on health and safety, including life-threatening injuries.

This symbol refers to a possibly hazardous situation. Failure to observe these references may result in minor injuries and/or damage to property.

This symbol points out important information for working with the system in a proper manner. Failure to observe these references may result in malfunctions in the system or disturbances in the environment.

2.2 Additional safety requirements

Country-specific requirements, standards and regulations must be observed.

2.3 Usage in accordance with intended purpose

The RO-system is used to desalinate softened water. The system must only be operated with water supplied in accordance with the quality described in Chapter C and the operating parameters specified there.

The system must not be operated unless it is in proper working order. Any malfunctions must be rectified immediately.

2.4 Operating staff

Only persons who have read and understood these Operating Instructions are permitted to operate the system. When operating the system, it is particularly important to observe the safety information strictly.

2.5 Residual dangers

Water damage

To avoid accumulation of spills caused by leaks, the area in which the system is set up must be equipped with a floor drain and/or a leak monitoring system and corresponding alarm.

Electrical shock

Do not touch electrical components with wet hands. Before performing tasks on parts of electrical system, disconnect the system from electrical power supply.

Mechanical force

Parts of the system are under excess pressure of up to 25 bar (g). Release the pressure from the system before repairs and maintenance tasks.

Hygiene-critical applications

Danger of contamination of system components due to non sufficient execution of cleaning / disinfection of the unit.

Adhere to the information provided regarding cleaning and disinfection.

2.6 Bringing the system to a stop in the event of an emergency

- Turn off the main switch
- Shut off the water supply

After remedying the damage:

- Open the water supply
- Turn on the main switch

2.7 Safety information for maintenance task

The operator must take pains to ensure that all maintenance, inspection and assembly tasks are performed by authorized and qualified professionals who have been sufficiently informed for the task at hand by thoroughly studying the Operating Instructions. These tasks must be properly performed by professionally trained staff member.

The system must be shut down and protected from being placed in operation again unintentionally before all repair and maintenance tasks. It is absolutely essential to observe the procedure described in these Operating Instructions for shutting down the system.

Before beginning tasks on the electrical equipment of the system, a check must confirm that power has been disconnected from the corresponding section of the system. In addition, the system must be secured to prevent it from being turned on again unintentionally.

Protective clothing suitable for the hazard at hand must be worn while performing the task. Immediately after the maintenance tasks are completed, all safety and protective equipment must be set back in place and functionality restored

2.8 Disposing of system parts and operating materials

When they need to be discarded, system parts must be disposed of according to local requirements including separately, if so required.

2.9 Unauthorized conversion and manufacturing replacement parts

Conversion or modification of the system is only permitted with the approval of the manufacturer. The same applies to making changes in the programming for the control system. Original replacement parts and accessories authorized by the manufacturer enhance safety. Use of other parts will void the warrantee.

2.10 Warrantee claims and liability

This product corresponds to the state of the art and was designed and manufactured in accordance with applicable rules of the technology, after which it was subjected to a quality control process.

If there should nevertheless be any grounds for complaint, please direct requests for replacement to the manufacturer of this product in accordance with the general terms and conditions of sale and delivery.

3 Basic principles of reverse osmosis systems

3.1 The principle of reverse osmosis

Osmosis is a process on which nearly all natural metabolic processes are based. If two solutions of varying concentrations are separated in a system by a semipermeable membrane, the solution with the higher concentration will always have a tendency to become more diluted. This process (osmosis) will continue until osmotic equilibrium is achieved.

In the process of reverse osmosis, the direction of the osmotic flow is reversed. To achieve this, pressure must be exerted on the concentrated solution. This pressure must be considerably greater than the osmotic pressure that arises due to the natural balancing of differing concentrations.

Synthetic membranes are used in water treatment systems that work on the principle of reverse osmosis. These membranes are permeable for water molecules. The content materials dissolved in the water are held back by the membranes. High pressure causes the concentrated solution (for example drinking water or process water) to flow through these membranes. The result is a separation of this solution into a partial flow with water in which the content materials that are held back are located (concentrate).

3.2 Calculation equations

Yield [%] =
$$\frac{\text{permeateoutput}[l/h] \bullet 100\%}{\text{feed waterinput}[l/h]}$$

feed water input = Permeate output + concentrate output

Concentrate output [I/h] = $\frac{\text{permeateoutput[I/h]} \cdot 100\%}{\text{yield [\%]}}$ - permeate output [I/h]

Desalinization rate [%] = [1 - \frac{Cy \text{ permeate}}{Cy \text{ raw water}}] \cdot 100\%

3.3 Dependencies of permeate output

The permeate output of the system depends on the particular feed water parameters like temperature, feed water pressure and salinity and thus may be lower.

The nominal output specified in the technical data (chapter C) refers to the corresponding design parameters.

Generally, when adjusting the unit, do not exceed max. permeate output and do not underrun min. amount of concentrate.

In addition the following applies to units with permeate output \geq 600 l/h; do not underrun min. amount of concentrate recirculation.

In addition the following applies to units with permeate output of 120 - 500 l/h; do not exceed max. pump pressure.

If the system is operated at a higher feed water temperature than the design temperature; do not to exceed the maximum permeate output that is specified in the technical data (chapter C)!

3.4 Conductivity of first permeate

After switching on the RO system, permeate with high conductivity is produced for a short time. Therefore, assure that during the system design of the peripheral systems engineering a minimum running time of the RO system of at least 30 min per shifting process is guaranteed.

Transport and Storage

All units must be secured against slipping and falling over during transport!

The transport weight corresponds to the empty weight. For transport weights, please refer to the Technical Data in Chapter C.

The units can be damaged by frost. Because of this, the units must be protected against frost and freezing during transport and storage.

The min. /max. storage temperature is 0 - 40°C.

The maximum storage duration for the units in their original packing is 12 months at 20 °C.

After this period the membrane module has to be replaced.

The maximum period of storage is 12 months, if the module has been delivered separately in its original packaging.

Contents of Chapter C

1.	Tech	chnical data2		
	1.1.	1 Feed water specification2		
	1.1.	2 Connections2		
	1.1.	3 Output data2		
	1.1.	4 Dimensions and weights2		
	1.1.	5 Environmental data2		
2.	Usag	ge limits3		
3.	Proc	duct description4		
3	.1	Rating plate4		
3	.2	Working principle diagram4		
3	.3	Functional description		
3	.4	Options4		

1. Technical data

System		Budget RO 80	Budget RO 130
Item-no.:		381 900	381 901
Control		RO	524
Feed water specification			
Feed water pressure min./max.	bar	3/6 :	± 0,5
Temperature min./max.	°C	5/	35
Connections			
Feed water	DN	20 (¾	4" AG)
Permeate / Concentrate	DN	10 (hose nozz	le ø13,65 mm)
Power consumption	kW	0,	37
Power connection	V/Hz	230)/50
Protection type		IP	54
Output data			
Permeate outlet max.		80	130
Concentrate outlet (softened water as feed water)		00	120
approx.	1/11	90	130
Concentrate outlet (hard water as feed water) approx.		150	230
Operating pressure max.	bar	14	
Prmeate counter pressure max.	bar	0,3, without permeate backflow	
Recovery (softened water as feed water) approx.	%	5	0
Recovery (hard water as feed water) approx.	%	35	
Salt rejection rate min.	%	95	
Dimensions and weights			
Dimensions (HxWxD)	mm	370x800x370	
Weight approx.		31	
Environmental data			
Max. ambient temperature		4	0
Relative humidity (air)		<95, non condensing	
Noise level during operation	dB(A)	7	4

Systems are designed for hardness stabilised drinking water without chlorine in accordance with the German Drinking Water Regulation with a salt content of 1000 mg/l and at a feed water temperature of 15 °C.

2. Usage limits

In order to attain the life span of 3 years calculated for the membranes, reverse osmosis installations must be supplied, in accordance with the installation type, with softened water (types ND, KR, e.g.) or tap water with stabilised hardness level (type AS, e.g.) and run in compliance with the German Drinking Water Regulation and the specifications below. Membranes are wearing parts. The degree of wear depends on the feed water quality and the operating conditions.

Parameter	Unit	Limit
Free chlorine *	mg/l	not detectable*
Iron **	mg/l	0.2
Manganese **	mg/l	0.05
Silicate ***	mg/l	25
SDI ⁴	-	3
pH level during operation ⁵		3.6-9.5
pH level during cleaning		2-12

The feed water must be free from substances that damage the membrane. These are in particular:

- oxidants (e.g. free chlorine, ozone, hydrogen peroxide)
- surfactants (especially if cationic)
- biocides and inhibitors
- natural organic matter (NOM)

Additionally, the operating parameters for the reverse osmosis installations given in chapter C (Technical Data) apply.

If the UP feed water is softened, the soft water quality is to be observed. If antiscalant is added for hardness stabilisation (i.e. when iron, manganese and silicate are stabilised at the same time), the manufacturer's specifications must be complied with. If necessary, the pH or the permeate output must be adjusted.

* Free chlorine (oxidants) corrodes the plastic membrane, especially if metal ions are present. This attack is irreversible and will cause a decrease of the salt retention rate while increasing the permeate conductance. This is why the feed water of the UP installation should not contain any free chlorine.

****** Iron/manganese can be present in a dissolved or undissolved state. Undissolved iron or manganese should be removed by filtration. Dissolved iron/manganese can be oxidised and then removed by filtration or stabilised, for example, by means of an antiscalant. Iron/manganese deposits on the membranes can generally be removed by chemical cleaning.

******* Silicate may form solid deposits on the membranes which are hard to remove. The maximum silicate concentration in the RO concentrate should not exceed 100 mg/l if soft water is used. In RO installations, type KR, the maximum silicate concentration in the RO feed water is 10 mg/l for this reason.

⁴ The SDI is a sum parameter. It indicates the degree to which suspended matter will likely form deposits on the membrane. If the SDI > 3, prefiltration must be improved accordingly.

⁵ The pH level considerably influences the solubility of many water compounds. It may be necessary to modify the pH level in order to obtain the desired permeate yield or quality.

3. Product description

3.1 Rating plate

The rating plate is located on the front side of the system. It contains important information on the output and maximum operating parameters of the system.

To ensure fast and problem-free processing of warrantee claims, technical information or customer service, be sure to indicate the system type, item number and manufacturing number.

3.2 Working principle diagram

See the PID in the appendix.

3.3 Functional description

The RO feed water is conveyed to the pump via an activated carbon filter (micron rating 5 $\mu\text{m}).$

The pump feeds the water with high pressure to the semi-permeable membranes.

The water that passes the membranes (permeate) is almost free from minerals.

The minerals held back are continuously carried away with the concentrate stream.

The installation controller monitors and controls all important functions during permeate production and during idle periods

3.4 Options

The options available for this installation/ these installations are described in the P&I diagram and in the list of components in the appendix of this manual.

Contents of Chapter D

1	Set	-up	.2
	1.1	Requirements for the set-up location	2
	1.2	Setting up the system	2
2	Wat	ter-side connections	3
	2.1	Necessary qualifications of the assembly staff	3
	2.2	Making the hydraulic connections	3
3	Elec	trical connection	4
	3.1	Necessary qualifications of the assembly staff	4
	3.2	Circuit diagram of the system	4
	3.3	Connecting the power supply	4

1 Set-up

1.1 Requirements for the set-up location

- The room in which the system is set up must meet the environmental conditions specified in Chapter C/2.
- The set-up surface must be even and run horizontally.
- The room must be well ventilated and not exposed to freezing temperatures.
- To avoid accumulation of spills caused by leaks, the area in which the system is set up must be equipped with a floor drain and/or a leak monitoring system and corresponding alarm.
- The necessary electrical connections must be available on the construction side (see Chapter C/2) and must be located no more than 2 m away from the system.
- The feed water connection must be provided with a shut-off valve.

1.2 Setting up the system

- Unpack the system.
- Check over the delivery for completeness and transport damage.Any deviations or damage must be reported to the manufacturer immediately.
- The system must be set up on a holding surface in accordance with the requirements of Chapter C/2.

2 Water-side connections

2.1 Necessary qualifications of the assembly staff

The water-side connection must only be made by trained professional staff members.

Observe general regulations (in German-speaking countries, DIN, DVGW, SVGW and ÖKGW) as well as local installation requirements while installing the system.

2.2 Making the hydraulic connections

Feed

Connect the inlet.

Permeate

Connect the permeate output with the consumer line.

Concentrate

Connect the effluent line with the drain.

During standstill times of the system the maximum back pressure of 0.3 bar must not be exceeded.

The cross section of permeate piping by customer may only be one nominal width greater than the permeate output piping of the system.

At a back pressure > 0.3 bar and the danger of permeate backflow, a check valve has to be installed into permeate piping.

It is only allowed to install a shut-off valve into permeate piping, if also a relief valve is installed.

3 Electrical connection

3.1 Necessary qualifications of the assembly staff

Electrical connection tasks may only be performed by an electrician in accordance with the applicable country-specific regulations.

3.2 Circuit diagram of the system

The circuit diagram of the system is located in the appendix of this operating manual.

3.3 Connecting the power supply

Before connecting the power supply, make certain that the corresponding main switch is turned off. Make the power supply connection in the control cabinet with a fixed connection according to the circuit diagram.

Contents of Chapter E

1	Plac	cing the system in service	.2
	1.1	Qualifications of the commissioning staff	.2
	1.2	Rinsing the system	.2
	1.3	Adjusting the recovery	.3
	1.4	Mounting the disc	.3
2	Tak	ing the system out of service	.3

1 Placing the system in service

1.1 Qualifications of the commissioning staff

The system must be placed in service by qualified professionals.

Before the system is placed in service, all screw connections must be retightened.

1.2 Rinsing the system

The preservative solution contains sodium bisulfite, glycerine and sodium bicarbonate.

The preservation fluid should be drained out into the run-off channel in accordance with applicable regulations governing pouring and draining.

- Mount the separately delivered membrane element, packed its original packaging, into the installation, before rinsing
- Connect the product permeate with run-off channel
- Open feed water
- The system into operation (see Chapter F) and rinse for minimum 15 minutes

Before start-up, turn the pump with a screwdriver on the fan side once clockwise.

1.3 Adjusting the recovery

The recovery of the system depends on the pre-treatment of the feed water

	type	of orifice
Feed water	Budget RO 80	Budget RO 130
Hard water	ø 1,3 mm	ø 1,7 mm
Softened water	ø 1,0 mm	ø 1,2 mm

The installation is fit at the factory with a disc for operation with soft water

If the installation is fed with hard water while the soft water disc is mounted, the membrane element may be damaged.

The permeate output of the system depends on the temperature of the feed water. For further information see Chapter A/3.2.

1.4 Mounting the disc

The disc is mounted in the concentrate outlet pipe as follows:

- Unscrew and remove the hose tail from the concentrate outlet
- Remove the mounted disc
- Mount the new disc as shown in the picture

Re-install the hose tail into the concentrate outlet. Seal it with Teflon tape.

2 Taking the system out of service

After having taken the system out of service >3 months; replace membrane module before re-commissioning.

Contents of Chapter F

1		Operating and display components 2)
2		Operating states	}
3		Short description control system	ł
	3.:	1 Turn on system	ł
	3.2	2 Turn off system	ł

1 Operating and display components

	Description	Operatin	
A	Main switch	 Turns the system on and off malfunction acknowledgement^{BE} 	
В	Key button	Call up desinfectionCall up calibration	
С	Display	Display of: - current conductivity of permeate - current operating state - malfunction	
D	LED operation (green)	Permanent: \rightarrow system in operation, no malfuncon Flashing: \rightarrow malfunction active	
E	LED desinfection (red)	Permanent: \rightarrow desinfection activ	

1

For additional information on the function and operation of the RO 524 control unit, please refer to the RO 524 control unit manual in the appendix of these Operating Instructions.

2 Operating states

Operation

Display: <mark>cy</mark>

Input NVO (terminal 24,25) closed

Inlet valve 1V01 opened, pump 1P01 in operation

System is producing permeate

Tank full

Display: b0

Input NVO (terminal 24,25) opened

System is turned off

Discont. Rinsing

Display: b2

Time-controlled permeate production, if operating state Tank full

has been active for the set time

Forced stop

Display: <mark>b1</mark>

Input **REG** (binding post 26,27) opened

System is turned off till Input REG closed again

Desinfection

Display: b3

System in operation without any safety devices

3 Short description control system

3.1 Turn on system

- Main switch 0/I (A) in position I
 - ➔ Display: 88: Initialisation
 - ➔ Display: b0: Tank full
 - → Display: 15: Operation with display of conductivity of permeate (e. g. 15 μ S/cm)

*(Only for systems with conductivity measuring, z. B. 15 μ S/cm)

3.2 Turn off system

Main switch 0/I (A) in position 0

Contents of Chapter G

1	Gen	neral information	2
	1.1	Malfunction message to the manufacturer	2
	1.2	Malfunction display	2
	1.3	Malfunction reset	2
2	Mal	function table	3

1 General information

The use of high-quality individual components and installing safety and monitoring equipment in our systems allows us to reach a very high level of operational availability.

If an operating malfunction should nevertheless arise, the error can easily be detected using the following malfunction table and the cause eliminated.

If serious malfunctions occur, please contact the manufacturer (see rating plate)

Only qualified professional personnel with the appropriate training should eliminate malfunctions, taking into consideration the safety requirement in Chapter A of these Operating Instructions!

Power must be disconnected from the system before beginning these tasks, and the system must be protected to ensure it is not turned on again unintentionally!

Pressure must be released from all lines.

1.1 Malfunction message to the manufacturer

To ensure effective help in resolving malfunctions, please have the following information on hand:

- Manufacturing number
- Item number
- System type
- Log sheets and maintenance sheets from the last 4 months

1.2 Malfunction display

- green operation-LED is flashing
- **E**<fault number> appears in the display

1.3 Malfunction reset

- Switch off system for a short time
- After turning on the system again, the malfunction is eliminated

2 Malfunction table

Malfunction	Cause	Remedy
Control display dark	Power supply interrupted	Make power supply connection
	10 A fuse F1 defective	Unscrew the front plate and replace the fuse in question
	1,6 A fuse F2, F3 defective	
	Flat band cable between the motherboard and the display unplugged	Unscrew the front plate and plug the cable back in
	Control system defective	Replace the control system
Display E2: Hard water	Hard water sensor triggered (if present)	 Check the soft water quality Check the sensor and replace if necessary
	Wire jumper defective	Restore the wire jumper
Display E3, E5: Low pressure	Feed water pressure too low	Check the pressure difference on the softener Increase the feed water pressure
	Filter blocked	Replace the filter cartridge
	Pressure switch defective	Replace the pressure switch
	1V01 input valve defective	Replace the valve
Display E7: Conductivity of permeate to	Conductivity of feed water too high	Calculate desalinization rate Target: > 97%
	Desalinization rate too low	After consultation with the manufacturer: - Clean RO modules - Replace RO modules
System does not start	Display b0 tank full, although permeate tank empty	Level switch defective
	Display 1-99 system in operation	Pump defective
	Display b1 forced stop	Connected softener is in regeneration
Permeate output too low	Feed water temperature too low	Calculate permeate output according to Chapter A3.3
	Permeate counterpressure too high	Check permeate line
	Modules blocked	After consultation with the manufacturer: - Clean RO modules - Replace RO modules
	Pump defective	Replace pump
	Pump stops turning	turn the pump with a screwdriver on the fan side once clockwise

Contents of Chapter H

1	Mai	ntenance and monitoring tasks	2
	1.1	Safety information	2
	1.2	General information	.2
2	Mai	ntenance	.3
	2.1	Maintenance tasks	.3
Μ	ainten	ance log	.4

1 Maintenance and monitoring tasks

1.1 Safety information

The operator must ensure that all maintenance, monitoring and assembly tasks are performed by authorized and qualified trained personnel.

The system must be shut down and protected from being placed in operation again unintentionally before all repair and maintenance tasks.

Before beginning tasks on the electrical systems and equipment, a check must confirm that power has been disconnected from the system.

In addition, the system must be secured to prevent it from being turned on again unintentionally.

Protective clothing suitable for the hazard at hand must be worn while performing the maintenance tasks.

Immediately after the maintenance tasks are completed, all safety and protective equipment must be set back in place and functionality restored.

1.2 General information

To ensure long-term problem free operation of the system, maintenance tasks must be performed at regular intervals and a record must be kept of operating parameters.

The record of operating parameters and maintenance tasks should be kept by the operator of the system himself.

Signing a maintenance contract with the supplier makes it possible for the supplier to take over the responsibility of performing regular maintenance tasks on the system.

The documentation of maintenance tasks must be kept on the maintenance log that is provided for this purpose.

2 Maintenance

1

Maintenance tasks should be performed when needed, but no less often than at the maintenance specified intervals.

2.1 Maintenance tasks

The following maintenance task should be performed:

System part	Task to be performed	Maintenance interval
- Fine filter	Replace the fine filter cartridges and clean the filter housing	 3 months if the pressure drops by0.8 bar
- Pressure switch	Functional test by blocking off the feed water inlet \rightarrow RO must switch off	- 6 months
- Conductivity cell(s) (if existing)	Check of parameters with reference device, if necessary new calibration	 on start-up 1year quality of feed water changes

Maintenance log	
Customer:	System type:
	Item No.:

tem	No.				

Placed in service on: _____ CW _____

1. Quarter / year: _____

System part	CW 1	CW 2	CW 3	CW 4	CW 5	CW 6	CW 7	CW 8	CW 9	CW 10	CW 11	CW 12	CW 13
Fine filter													
Pressure switch													
Conductivity cell (if existing)													

Maintenance log

Customer: _____

System type: _____

Item	No.:			
		_		

Placed in service on: _____ CW ____

2. Quarter / year: _____

System part	CW 14	CW 15	CW 16	CW 17	CW 18	CW 19	CW 20	CW 21	CW 22	CW 23	CW 24	CW 25	CW 26
Fine filter													
Pressure switch													
Conductivity cell (if existing)													

Maintenance log

Customer: _____

System type: _____

Item	No.:			
-		-		

Placed in service on: _____ CW _____

3. Quarter / year: _____

System part	CW 27	CW 28	CW 29	CW 30	CW 31	CW 32	CW 33	CW 34	CW 35	CW 36	CW 37	CW 38	CW 39
Fine filter													
Pressure switch													
Conductivity cell (if existing)													

Maintenance log

Customer: _____

System type: _____

Item No.: ______

Placed in service on: _____ CW ____

4. Quarter / year: _____

System part	CW 40	CW 41	CW 42	CW 43	CW 44	CW 45	CW 46	CW 47	CW 48	CW 49	CW 50	CW 51	CW 52 (CW 53)
Fine filter													
Pressure switch													
Conductivity cell (if existing)													

Budget R Item-No. 00	O 80 l/h 381 900	Component list					
PID-No.	Item-No.	Description					
1501	00 330 049	filter housing 10", 3/4"IG,					
1601	00 335 082	activated carbon - filter cartridge 10"					
1P01	00 390 473	pump PSAM 70/A, 230V/50Hz, 0,37kW					
1Pr03	00 600 062	pressure switch NO, 1bar, 1/8"					
1Pr05	00 630 209	pressure gauge filter outlet, SS, NG63, 1/4"h, 0-25 bar					
1V01	00 410 214	solenoid valve, ¹ /2", 0,3-10bar, 24V/DC					
1V03	00 410 214	solenoid valve, ¹ /2", 0,3-10bar, 24V/DC					
1.V01	00 400 164	pressure vessel, 4021-1					
1701	00 395 235	membrane module, 4021					
	00 545 282	control RO 524, 24V/DC					
1Q02	00 381 903	permeate conductivity measurement RO Budget					

Budget R Item-No. 00	O 130 l/h 381 901	Component list						
PID-No.	Item-No.	Description						
1E01	00 330 049	filter housing 10", 34"IG,						
1101	00 335 082	activated carbon filter cartridge 10"						
1P01	00 390 473	pump PSAM 70/A, 230V/50Hz, 0,37kW						
1Pr03	00 600 062	pressure switch NO, 1bar, 1/8"						
1Pr05	00 630 209	pressure gauge filter outlet, SS, NG63, 1/4"h, 0-25 bar						
1V01	00 410 214	solenoid valve, 1/2", 0,3-10bar, 24V/DC						
1V03	00 410 214	solenoid valve, 1/2", 0,3-10bar, 24V/DC						
1101	00 400 164	pressure vessel, SS, 4021-1						
1701	00 395 145	membrane module, 4021						
	00 545 282	control RO 524, 24V/DC						
1Q02	00 381 903	permeate conductivity measurement RO Budget						

Datum	Name		Datum	Name		Projektbez
		aez.	25.0.08	Tie		Control
		5			-	Auftraasnr
		donr				J
		gepi.				

Print date: 07.07.2014 Kopieren oder Weitergabe nur mit unserer schriftlichen Genehmigung gestattet

Operating instructions

RO 524 control system

	DN/OFF Betrieb Fonctionnement Disinfection Desinfektion Desinfection
1-99	operation / Betrieb / fonctionnement, display / Anzeige / afficheneur µS/cm
6	conductivity disabled/ Leittanigkeit deaktiviert/ conductivite inactive full tank /Tank voli/réservoir plein
67	forced stop/Zwangsstop/arrêt forcé
ь2	intermittent rinse / diskontinuierliche Spülung / rinçage discontinu
63	disinfection/Desinfektion/désinfection
E5	hard water/Hartwasser/eau dure
E), F	4, E5 low pressure / Druckmangel / manque de pression
E6	conductivity prealarm/Leitfähigkeitsvorwarnung/avertissement préventif de conductance
E1	conductivity exceeded / Grenzleitfähigkeit überschritten / conductivité limite supérieure dépassée
RO	524

Last update	Date	Author	Remarks / Software Version
1	04.04.14	Mü	Additional: *MV1(1V01) **MV3(1V03)
2	12.08.15	Mü	Update, page 3 – 1.1 chapter

CE

Translation of original instructions

Table of Content

1	Des	cription of functions	3
	1.1	Normal operation	3
	1.2	Regeneration (forced stop)	4
	1.3	Hard water (Limitron)	4
	1.4	Disinfection (to be carried out by technically qualified staff only)	4
	1.5	Intermittent flushing	5
	1.6	Emergency shut-down	5
2	Оре	erating parameters	6
3	Stat	tus and malfunction signals	7
4	Teri	minal allocation	8

1 Description of functions

1.1 Normal operation

Following **"power-on"**, the control system starts an initialization cycle with a duration of two seconds. During initialization, **"88"** is displayed and the LEDs are off.

The control system then switches over to normal operation, the display switches to operation (**"b0"**) and the green LED lights up.

If the level in the tank makes it necessary to fill it, i.e. both level switches are closed, the solenoid valve *MV1 will open.

(The unit may also be equipped with one level switch only; in this case, a jumper must be installed on the low level switch.)

The water pressure is then checked by the pressure switch.

If the pressure signal is not available, an automatic shut down is initiated after a preset time and **"E5"** is displayed.

If the pressure signal is received, the pump is started up after a preset time and the water conductivity measured is indicated.

This operating status is changed if the upper level switch closes, indicating that the tank is full.

In this case, the pump is switched off and the concentrate valve **MV3 is opened; **"b0"** is displayed.

The inlet solenoid valve *MV1 is closed again after a displacement time and the concentrate valve **MV3 is also closed after a preset time.

If the pressure switch signals low pressure to the control unit while the pump is running, the green LED flashes and **"E3"** is displayed until the pressure switch signals the pressure again. After a preset time, the pump is restarted.

The control system then switches over to normal operation with the exception that the two signals "normal operation" and **"E3"** are displayed alternately.

The installation starts up again automatically after 1 minute. If the alarm occurs again, the delay is doubled until the 32 minute maximum is reached. The restart delay remains 32 minutes until the installation is switched off at the mains switch.

If the conductivity exceeds the warning value for five minutes while the pump is running, the green LED flashes and the conductivity is displayed alternately with **"E6"** until the conductivity falls below this value. Normal operation then resumes.

If the conductivity exceeds the conductivity alarm limit for five minutes while the pump is running, a centralised alarm is initiated, the green LED flashes and the conductivity is displayed alternately with **"E7"**.

If the alarm limit is exceeded, the unit is automatically shut down and **"E7"** is displayed.

If the conductivity measurement is disabled, the control system displays a run indicator (lowercase *o*) instead of the conductivity on the right side of the 7-segment display and the conductivity limit warning values will be not monitored anymore.

Malfunction signals are reset by switching the unit **ON and OFF**. The flashing green LED is then lit continuously.

1.2 Regeneration (forced stop)

The unit can be set to "**regeneration**" or "**forced stop**" by operating (opening) the appropriate inlet.

The pump is then shut down immediately and the inlet solenoid valve *MV1 is closed.

If the inlet is closed, the control unit is switched back to normal operation.

This is the case when an individual water softening unit is installed upstream of the unit.

1.3 Hard water (Limitron)

If the "**hard water**" or "**Limitron**" switch is activated (opened), an emergency shut-down is initiated and "**E2**" is displayed

1.4 Disinfection (to be carried out by technically qualified staff only)

To switch to the "disinfection" operating mode, press the button before switching the power on and keep the button pressed during initialization, while "**88**" is displayed.

After five seconds, "**b3**" is displayed, the inlet solenoid valve *MV1 is switched on, a centralised alarm is initiated and the red LED starts flashing slowly.

If meanwhile the button has been released, the pump will be started up after a further time delay of five seconds and the conductivity value will be displayed alternately with "**b3**".

To switch back to normal operation, press the push button again. The pump will be shut down immediately. The concentrate valve **MV3 will be opened.

Then, the inlet solenoid valve *MV1 will be closed and, if applicable, the concentrate valve.

Caution:

In this mode of operation, all safety functions are deactivated. Operation only permitted under close supervision.

Make sure that the water pressure is correct in order to prevent damage to the pump

1.5 Intermittent flushing

If the inlet solenoid valve *MV1 is switched off for a preset time in normal operation, in other words if the tank is still full, the control system will switch to "intermittent flushing".

"**b2**" is displayed, the concentrate valve **MV3 will be opened first and then the inlet solenoid valve *MV1 will be opened.

The valves are switched off in reverse order and with the same time intervals. The control system switches back to normal operation.

If the pressure switch signals low pressure to the control unit, the green LED flashes and a centralised alarm is initiated.

"E3" is displayed until the pressure switch signals the pressure again.

Calibration (to be carried out by technically qualified staff only)

To switch to the "calibration" mode, press the push button before switching the power on and keep the button pressed during initialization while "**88**" and then "**b3**" are displayed.

The conductivity value is displayed alternately with "**C**". A centralised alarm is initiated and the red LED starts flashing slowly. The green LED is lit and the pump is switched on.

Each time you press the button, the conductivity offset value is increased by approx. 2%.

Each time you press the button, the current conductivity value is displayed immediately and the current offset is stored irrespective of whether mains power is available.

When you reach the maximum offset, the conductivity measurement will be switched off and "OF" will be displayed.

The offset will be switched to minimum value the next time the push button is pressed until, after having pressed the button 62 times, the initial value is displayed again.

Calibration mode can only be terminated by switching the power off.

It is only necessary to use the calibration function if the conductivity measuring cell has been replaced.

1.6 Emergency shut-down

Emergency shut-down means that the pump is shut down immediately and the concentrate valve **MV3 is opened.

The corresponding malfunction signal "**E**" is displayed, the green LED flashes rapidly and a centralised alarm is initiated.

First the solenoid valve V1 will be closed and then, if applicable, the concentrate valve **MV3.

An emergency shutdown can only be reset by switching the power off.

2 Operating parameters

The following table lists the factory setting, precision and limit of the operating parameters.

Note:

Operating parameters can only be programmed by the manufacturer!

Parameter	Precision	Lim	its	Setting				
		min.	max.	set by manufacturer				
TIME_PRESSURE_AVAILABLE	0.05 sec.	0.1 sec.	9.9 sec.	9.9 sec.				
TIME_PRESSURE_STARTUP	0.05 sec.	0.1 sec.	9.9 sec.	9.9 sec.				
TIME_DISPLACEMENT	1.0 min.	0 min.	99 min.	3 min.				
CONDLIM	0.5 µS/cm	1 µS/cm	99 µS/cm	50 µS/cm				
CONDWARN	0.5 µS/cm	1 µS/cm	99 µS/cm	40 µS/cm				
TIME_COND	1.0 min.	1.0 min.	250 min.	5 min.				
TIME_PRESSURELOW	0.05 sec.	0.1 sec.	9.9 sec.	1.0 sec.				
TIME_INT_FLUSH_START	1.0 h	1.0 h	250 h.	24 h				
TIME_VALVE_DELAY	0.05 sec.	0 sec.	60 sec.	10 sec.				
COND_OFFSET	0.5	-30	+30	-20				

Parameters which are set to 0 are disabled.

Description of parameters

TIME_PRESSURE_AVAILABLE	Time from switching on the inlet solenoid to malfunction signal "E5".
TIME_PRESSURE_STARTUP	Time from pressure detection (pressure switch ON) to pump start-up.
TIME_DISPLACEMENT	Time from pump shut-down (switching on of concentrate valve **MV3) to switching off the inlet solenoid valve *MV1.
CONDLIM	Conductivity limit at which the malfunction signal "E7" (also alternately with the conductivity value) is displayed after a delay of 5 min.
CONDWARN	Conductivity limit at which, after a delay of 5 min., warning "E6" is displayed alternately with the conductivity value.
TIME_COND	Time between exceedance of the conductivity limit and shut- down of unit with continuous "E7" signal.
TIME_PRESSURELOW	Time during pump operation before malfunction "E3" (low pressure) is signalled with the pressure switch off.
TIME_INT_FLUSH_START	Time before intermittent flushing is started with the inlet solenoid valve off (tank full).
TIME_VALVE_DELAY	Time to avoid simultaneous valve activation.
COND_OFFSET	Offset for conductivity measuring cell calibration.

3 Status and malfunction signals

Signal	Explanation
88	Signal during initialization.
b0	Signal in normal operation; "tank full" if the pump is not switched on (normally when the tank is full)
b1	"Emergency stop/regeneration" mode
b2	"Intermittent flushing" mode
	displayed alternately with the conductivity value when the pump is running
b3	"Disinfection" mode
	displayed alternately with the conductivity value when the pump is running
C	"Calibration" mode
C	displayed alternately with the conductivity value
OF	Displayed in "calibration" mode if conductivity measurement is to be switched off
	Displayed in all operating modes except "calibration" if the conductivity measurement is disabled
E2	"Hard water" or Limitron emergency shut down, displayed if the corresponding switch is opened
E3	Malfunction signal if no pressure is measured for a certain time with the pump running (" low pressure ")
E5	"Low pressure" signal shown if no pressure is measured for a preset time after switching on the inlet solenoid valve *MV1
E6	"Conductivity warning" signal shown if the conductivity warning limit is exceeded for more than 5 minutes; displayed alternately with other operating signals
E7	"Conductivity alarm" signal shown if the conductivity alarm limit is exceeded for more than 5 minutes; displayed alternately with other operating signals

4 Terminal allocation

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
L	Ν	Ν	L	Ν	L1	PE	PE	PE	PE	PE	PE	W	S	Ö																
Ma 23	ins 0V	So 23	ıft. OV	Pui 23	mp 0V								STO	I	Va *M 24V	lve V1 ′DC	Va **1 24\	alve MV3 /DC	Р	S	LLI	EV	HL	EV	RE	ĒG	М	т	Co Ser	nd. Isor

x 2N230V AC power supply, neutralx 3N230V AC power supply for softener, neutralx 4L230V AC power supply, phase conductor 1 max 5Ax 5Npump motor P1, neutralx 6L1pump motor P1, normally open contact max. 3.8Ax 7PE230V AC power supply, earthx 8PEearthx 9PEearthx 10PEearthx 11PEearth	x 1	L	230V AC power supply, phase conductor 1							
x 3N230V AC power supply for softener, neutralx 4L230V AC power supply, phase conductor 1 max 5Ax 5Npump motor P1, neutralx 6L1pump motor P1, normally open contact max. 3.8Ax 7PE230V AC power supply, earthx 8PEearthx 9PEearthx 10PEearthx 11PEearth	x 2	N	230V AC power supply, neutral							
x 4L230V AC power supply, phase conductor 1 max 5Ax 5Npump motor P1, neutralx 6L1pump motor P1, normally open contact max. 3.8Ax 7PE230V AC power supply, earthx 8PEearthx 9PEearthx 10PEearthx 11PEearth	x 3	N	230V AC power supply for softener, neutral							
x 5Npump motor P1, neutralx 6L1pump motor P1, normally open contact max. 3.8Ax 7PE230V AC power supply, earthx 8PEearthx 9PEearthx 10PEearthx 11PEearth	x 4	L	230V AC power supply, phase conductor 1 max 5A							
x 6L1pump motor P1, normally open contact max. 3.8Ax 7PE230V AC power supply, earthx 8PEearthx 9PEearthx 10PEearthx 11PEearth	x 5	N	pump motor P1, neutral							
x 7 PE 230V AC power supply, earth x 8 PE earth x 9 PE earth x 10 PE earth x 11 PE earth	x 6	L1	pump motor P1, normally open contact max. 3.8A							
x 8 PE earth x 9 PE earth x 10 PE earth x 11 PE earth	x 7	PE	230V AC power supply, earth							
x 9 PE earth x 10 PE earth x 11 PE earth	x 8	PE	earth							
x 10PEearthx 11PEearth	x 9	PE	earth							
x 11 PE earth	x 10	PE	earth							
	x 11	PE	earth							
x 12 PE earth	x 12	PE	earth							
x 13 STO C centralised alarm contact (central control), 250V AC, 6A, changeove	x 13	STO C	centralised alarm contact (central control), 250V AC, 6A, changeover							
contact – floating			contact – floating							
x 14 STO NO centralised alarm contact (central control), 250V AC, 6A, normally	x 14	STO NO	centralised alarm contact (central control), 250V AC, 6A, normally							
open – floating	4.5		open – floating							
x 15 STO NC centralised alarm contact (central control), 250V AC, 6A, normally	x 15	STOINC	centralised alarm contact (central control), 250V AC, 6A, normally							
x 16 *MV1 earth colonoid valve *MV1 earth	v 16	*MV/1 oprth	closed, filodulity							
x 17 *MV1 colonoid valve *MV1 normally open contact 24V/DC 0.54	× 10	*M\/1	solenoid valve *MV1 permally open centact 24//DC 0.54							
x 17 Solehold valve **MV3 earth	× 17	**M\/2 oarth	solenoid valve **MV2_oarth							
x 10 **MV3 colencid valve **MV3 normally open contact 24V/DC 0.54	× 10	**M\/3	solenoid valve **MV3, earth							
x 20 PS earth pressure switch – earth	× 19	DS earth	pressure switch – earth							
x 20 F3 call pressure switch input 24V DC 10mA	× 20		pressure switch input 24// DC 10mA							
x 22 LLEV earth low level switch - earth	× 21	F J LLEV parth	low level switch – earth							
$\times 22$ ELLV editin low level switch input 24V/DC 10mA	× 22		low level switch input 24/ DC 10mA							
x 23 ELLV IOW level switch input 24V DC, TOTTA	x 23	HI EV earth	high level switch – earth							
$\times 25$ HEV bigh level switch input 24V DC 10mA	× 25		high level switch input $241/DC_{10mA}$							
x 26 PEC earth regeneration (emergency ston) – earth	× 25	PEG earth	regeneration (emergency ston) - earth							
x_{20} REG regeneration (emergency stop) – earth	× 20	PEG	regeneration (emergency stop) - earth							
x 28 MOT earth motor circuit breaker (bard water Limitron)- input	× 27	MOT earth	motor circuit breaker (bard water Limitron)- input							
x 20 MOT motor circuit breaker (hard water, Limitron)- input	× 20	MOT	motor circuit breaker (hard water, Limitron)- input							
x 29 FIOT FIDULE CICUL DEaker (field water, Limitron)- input 24V DC, 10HA	x 29		conductivity sensor input							
x 31 COND sensor conductivity sensor – earth	× 30	COND sensor	conductivity sensor - earth							
earth	× JT	CUND SCIISUI	Conductivity School = Calut							